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Human T-cell leukemia virus type I (HTLV-I)1 causes adult T-cell
leukemia (ATL) (1–3). The virus is also associated with a neuropathy/
myelopathy termed HTLV-associated myelopathy and tropical spas-
tic paraparesis. ATL develops in 2–5% of HTLV-I-infected individu-
als after a long latent period, suggesting a multistage process of
immortalization and transformation of T-lymphocytes. Extant data
suggest that 8 discrete events likely occur serially in vivo before an
HTLV-I-infected cell becomes immortalized and transformed (4).
How HTLV-I infection progresses from clinical latency to T-cell ma-
lignancy is not well understood but involves the unique viral trans-
activator/oncoprotein, Tax (Fig. 1). Tax has been shown to be singly
sufficient for immortalizing T-lymphocytes (5, 6) and transforming
rat fibroblasts (7). Further, transgenic mice expressing Tax (driven
by the HTLV-I long terminal repeat (LTR)) develop neurofibroma, a
tumor of mesenchymal tissue (8). Finally, large granular lymphocytic
leukemia has been found in mice transgenic for Tax expressed from
the T-cell specific, granzyme B promoter (9).

It is estimated that cells in the human body divide 1016 times
during a lifetime. To control and prevent errors in cell divisions,
mammalian cells have evolved “gatekeepers” and “caretakers” to
regulate the rate of cell growth and the fidelity by which cellular
genetic information is transmitted to progenies (10). Gatekeepers
monitor the net proliferative capacity of a cell, whereas caretakers
act to eliminate DNA damages. Accordingly, one perspective is that
transformation occurs when both gatekeeper and caretaker func-
tions are abrogated. Using HTLV-I as a model, we review in a
non-exhaustive fashion current thoughts on how Tax perturbs nor-
mal cellular regulation and engenders cellular transformation.

The Molecular Biology of HTLV-I
HTLV-I belongs to the Deltaretrovirus genera of the Orthoretro-

virinae family. In vivo, the virus has a tropism for CD4� T-cells (11)
although CD8� T-cells may also serve as a reservoir (12). HTLV-I
infection is primarily transmitted via cell-cell contact (13, 14). Re-
cently, the human Glut1 glucose transporter has been identified as a
receptor for infection by cell-free virus (15). The proviral genome of
HTLV-I is roughly 9 kbp, and like other retroviruses, contains two

LTRs flanking structural genes encoding Gag, Pol, and Env (Fig. 1).
An additional region located between env and the 3�-LTR, known as
the pX region, encodes accessory proteins. The pX region has four
partially overlapping reading frames (ORF, Fig. 1), of which ORF IV
encodes Tax.

Tax is predominantly a nuclear phosphoprotein (16), which can
shuttle into the cytoplasm using a nuclear export signal (17). The
mechanism of this shuttling is unclear; however, recent findings that
Tax binds tristetrapolin (18) and that tristetrapolin associates with
nucleoporin Nup214 (19) raise the possibility that tristetrapolin may
serve as a possible nucleocytoplasmic transporter for Tax. Neverthe-
less, the primary nuclear activity of Tax is to modulate transcription
from the HTLV-I LTR (20–22) and cellular promoters including those
for IL-2, IL-13, IL-15, IL-2R, c-Fos, and granulocyte macrophage
colony-stimulating factor (23–30) among others. Indeed the breadth
of Tax’s transcriptional reprogramming of host cell genes was verified
by DNA array studies which showed that of 2000 assayed genes the
expression profiles of �300 were significantly altered (31). Tax influ-
ences so many promoters through its capacity to act in four discrete
signaling pathways: CREB/ATF (reviewed in Ref. 32); NF-�B (re-
viewed in Ref. 33); AP-1 (34); and SRF (35). These Tax signaling
cascades are discussed in greater detail elsewhere (36).

Tax and Cell Cycle Progression
In the course of transforming cells, viral oncoproteins such as E1A,

HPV E7, and SV40 T Ag profoundly dysregulate cell cycle controls
(37–39). Transition from one phase of the cell cycle to the next is
normally governed by cyclin-dependent kinases (CDKs) partnered
with cyclins. These CDK-cyclin complexes are in turn modulated by
phosphorylation mediated through CDK-activating kinases and
phosphatases, and through physical sequestration by CDK inhibitory
proteins (reviewed in Refs. 40 and 41).

An important cell cycle control resides at the transition from G1 to
S, which is substantially governed by the retinoblastoma tumor sup-
pressor (Rb) (42, 43). At this juncture, D- and E-cyclins with partner
CDKs (reviewed in Refs. 40, 41, and 44) converge to phosphorylate
Rb. Hypophosphorylated Rb sequesters and inactivates E2F factors,
which are needed for the expression of genes (such as dihydrofolate
reductase, DNA polymerase �, and cyclins) that are critical for S
phase events (reviewed in Ref. 45). Hyperphosphorylated Rb releases
E2F, activates E2F-responsive genes, and secures the passage of cells
from G1 into S (45–48). Thus, regulation of Rb phosphorylation by
cyclin-Cdk and CDK inhibitory proteins such as p16INK4a,
p21CIP1/WAF1, and p27Kip1 is a critical mechanism for influencing
gatekeeper function (37).

Tax reprograms G1 to S progression through multiple mechanistic
ways (i.e. direct protein-protein binding, transcriptional induction/
repression, and post-translational modification such as phosphoryl-
ation). Fig. 1B summarizes several key cell cycle factors that have
been experimentally shown to be influenced by Tax. For instance,
Tax can directly bind p16INK4a, CycD2, pro-IL-16, and Cdk4 (49–56).
On the other hand, p18INK4c (53, 57), CycA (58), CycC (31), CycD2 (31,
51–55, 60), CycE (51), Cdk2 (51), p21CIP1/WAF1 (53, 54, 59–63), and
E2F (64–66) are regulated by Tax via transcriptional induction/
repression (see Fig. 1B). Finally, Tax via an unknown mechanism
influences the phosphorylation of CycD3 (65). To properly consider
this complex pattern of interactions, one should appreciate that the
context of Tax’s up- or down-regulation matters. An instructive ex-
ample is presented by Tax-p21CIP1/WAF1 interaction. Various studies
agree that p21CIP1/WAF1 levels are significantly elevated in Tax-
expressing cells (53, 54, 61–63). However, depending on whether
p21CIP1/WAF1 complexes with CycD/Cdk2 or CycA/Cdk2, it has been
noted that the resulting ternary complex either promotes or inhibits
G1/S progression (67–69). These observations, if correct, help to ex-
plain seemingly opposing effects of Tax on CycD (up-regulated (31,
51–55)) and CycA (down-regulated (58)) transcription. Indeed, en-
hanced transcription of CycD in the face of repressed transcription of
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CycA would tip the balance toward more G1/S transition-promoting
p21CIP1/WAF1/CycD/Cdk2 at the expense of G1/S transition-inhibiting
p21CIP1/WAF1/CycA/Cdk2 moieties. To date, collective evidence do
support that Tax has evolved diverse means to defuse various cellular
brakes that guard against accelerated G1/S progression.

The ability of Tax to shorten the length of G1 and to accelerate cells
into S (70) embodies a constitutive (i.e. DNA damage-independent)
and a DNA damage-induced component. Thus, direct Tax binding of
Cdk4 and its enhancement of CycD-Cdk4 activity (55) occur consti-
tutively and are independent of any DNA damage-triggered events.
At the same time, Tax can also subvert DNA damage-induced G1

arrest enforced through p53 (71–74) (see more below). Currently, how
Tax affects other phases of the cell cycle is less clear. Emerging
findings suggest that this viral oncoprotein can also impair the DNA
damage-induced checkpoint in G2/M transition (75, 76).

Tax and Structurally Damaged Chromosomes
Cancer is a genetic disease. It is estimated that cancer cells can

contain more than 100,000 discrete mutations (77). All cancers can be
broadly divided into two groups (reviewed in Ref. 78): those arising
from loss of DNA repair function (and therefore have structurally
damaged chromosomes) and those with chromosomal instability (and
therefore have polypoidy and/or aneuploidy). Clastogenic DNA dam-
age is frequently found in HTLV-I-transformed cells (79) and cells
transfected to express Tax (80) (Fig. 2A). Clastogenic changes (point
mutations, deletions, substitutions, translocations) arise and persist
when defects in DNA repair mechanisms co-exist in a cell with a loss
in checkpoint functions that would normally eliminate damaged
DNA.

All cells acquire DNA damage at a low frequency as they transit
the cell cycle. Several mechanisms, including base excision repair
(BER), nucleotide excision repair (NER), recombination, and direct
repair of nicks by DNA ligation act to correct genetic mistakes. In
1990, the first clue that HTLV-I subverts cellular DNA repair came
from the finding that Tax repressed the expression of DNA polym-
erase �, an enzyme involved in BER (81). Subsequently, reduced
BER activity was confirmed in HTLV-I, HTLV-II, and bovine leuke-
mia virus-transformed cells (82). Next, Tax was found to suppress the
NER normally observed following UV irradiation of cells (83). NER
requires DNA polymerases � and � and uses proliferating cell nuclear
antigen (PCNA) as a cofactor. Excessive PCNA can prompt DNA
polymerase � to synthesize inappropriately new DNA past template
lesions, resulting in nucleotide misincorporation (84). Tax is believed
to inhibit NER through its transcriptional up-regulation of PCNA
(85); this inhibition of NER also depends, in part, on Tax’s inactiva-
tion of p53 function (71–74).

There is no evidence that Tax interferes with DNA ligation (86) or
DNA recombination. However, recent data suggest that Tax re-
presses the expression of human telomerase (hTert) (87). Repression
of telomerase is significant because the telomeric repeats of chromo-
somes normally prevent aberrant end-to-end fusions (Fig. 2B) and
protect the ends from degradation by exonucleases. Furthermore, de
novo double-stranded breaks in chromosomes can also be stabilized
by the transient addition of telomeric repeats (88–90). Indeed, we
have documented that Tax prevents such addition of telomeric re-
peats to new double-stranded breaks (91) and in this way potentially
interferes with a protective mechanism used to prevent inappropri-
ate breakages-fusions (Fig. 2B). The combined effects of Tax on BER,
NER, DNA end stability, telomerase, and cell cycle progression create
a setting in which repair of mistakes is compromised. These com-
bined dysregulations might explain the observed 2.8-fold increase in
genomic mutation frequency (92) in HTLV-I-infected cells.

Tax and Aneuploidy
The majority of cancers are aneuploid (93). In transformed cells,

numerical chromosomal changes that include losses or gains of
entire chromosomes (aneuploidy) generally co-exist with structural
chromosomal damage.2 Although controversial, increasingly aneu-
ploidy is thought to be a cause, rather than a consequence, of
transformation (95).

During normal mitosis, human diploid cells maintain euploidy
by precisely partitioning 23 pairs of chromosomes from a mother
cell to two daughter cells. ATL cells, by contrast, are famously
aneuploid (reviewed in Ref. 79). Their nuclei are highly lobulated or

2 F. Mitelman, B. Johansson, and F. Mertens, personal communication.

FIG. 1. HTLV-I Tax interacts with many cell cycle factors. A, genome
organization of HTLV-I with an enlarged presentation of the Tax-encoding
pX region. B, a tabular summary of some of the cell cycle factors that have
been found to interact with Tax.

FIG. 2. Tax causes chromosomal mis-segregation and chromosomal
breakage and fusion events. A–C, examples of monkey fibroblast cells that
were transfected with Tax and stained 48 h later with propidium iodide and
anti-kinetochore antisera. Arrows point to small aberrant sacules of DNA,
commonly termed micronuclei. Intensely stained dots within micronuclei indi-
cate the presence of kinetechores, which reflect inappropriate segregation of
centromere-containing chromosomes. D, an example of a chromosome from
Tax-expressing cells that exhibit multiple breakage and fusion events. Bright
interstitial dots in the chromosome represent in situ hybridization with a
telomere-specific probe. The six telomere spots indicate that this chimeric
chromosome has undergone a minimum of two breakage and fusion events.
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convoluted, earning them the name of “flower” cells. This suggests
that a cellular mechanism that guards against chromosomal mis-
segregation in mitosis is also subverted by HTLV-I. The mitotic
spindle assembly checkpoint (MSC) (96) is a key guardian of eu-
ploidy. Interestingly, when several ATL cell lines were tested ex
vivo, all were found to be deficient in MSC function (97). A potential
explanation for this loss arises from two findings: (a) Tax binds
human Mad1 (98, 99) and (b) Mad1 is an integral constituent of the
MSC (96). That impairment of Mad1 function by Tax may contrib-
ute to ATL pathogenesis finds intriguing support in the clinical
courses of non-HTLV-I acute myeloid leukemia (AML). In two large
AML series (1213 and 1612 patients, respectively), loss of a single
chromosome 7 (note that the gene for human Mad1 maps to chro-
mosome 7 (100)) prognosticated an extremely poor outcome (101,
102). In these two studies, whereas all AML patients had 5-year
overall survival rates of 24–44%, counterpart AML patients with
monosomy 7 had survival rates of 0–10%, respectively (101, 102).
Other explanations not excluded, a tantalizing parallel between
the two leukemias is that one (ATL) impairs Mad1 function
through viral oncoprotein subversion whereas the other (AML)
does so through physical loss of chromosome 7 (i.e. monosomy 7).

Is loss of MSC the sole reason for aneuploidy in ATL cells? The
answer appears to be “no.” Conceptually, one recognizes that loss of
checkpoint can explain the tolerance of mistakes by cells, but check-
point loss cannot create de novo mistakes. Recent studies suggest
that Tax might directly trigger chromosomal separation errors in two
ways. First, Tax can promote the unscheduled degradation of securin
and cyclin B1 most likely through the premature activation of the
CDC20-associated anaphase promoting complex (103), thereby lead-
ing to faulty mitosis. Second, like the human papilloma virus E7
oncoprotein (38), Tax can also induce aberrant centrosomal multipli-
cation in G1.3 Generating supernumerary centrosomes results in
multipolar mitosis, which is another mechanism for creating aneu-
ploidy (104).

Finally, there is a school of thought that suggests polyploidy as
the precursor of aneuploidy (104). Relevant to this notion, we note
that Tax expression does facilely create multinucleated (i.e.
polyploid) cells (76, 98). Add to this the fact that Tax can inactivate
p53 and Rb (65, 71–74), two factors essential to a G1 tetraploid/
polypoid checkpoint (105), and one then can further envision how
this might be yet another route traveled by HTLV-I/Tax/ATL cells
toward aneuploidy (Fig. 3).

Proliferation versus Apoptosis
A long standing cancer paradox is that overexpression of onco-

genes does not simply provide proliferative advantages to cells but
frequently also triggers cells to undergo apoptosis. Findings from
oncogenic transcription factors such as Myc, E1A, and E2F-1 show
this duality to be the rule rather than the exception (reviewed in Ref.
106). Indeed, it is now apparent that oncogenic insults induce coun-
tervailing responses by the cell, which are reflected in cell cycle arrest
and apoptosis. We reviewed, above, how Tax defeats cellular mech-
anisms for braking cell cycle progression. No cell cycle and/or genetic
instability manifestations of Tax can confer selective growth advan-
tage if cells fail to tolerate such phenotypic and genotypic changes
and choose instead apoptotic death. Hence, disabling the cellular
apoptotic response remains a requisite for transformation.

By definition, the clinical presentation of ATL implies that in a
subpopulation of CD4� T-cells, HTLV-I infection tips the balance
between proliferation and apoptosis toward the former. Nevertheless,
how HTLV-I Tax oncoprotein influences this choice is not fully un-
derstood. Many have examined the contribution of Tax to stress-
induced apoptosis. Overall findings have been controversial and di-
vergent. Some found that Tax protects cells from stress-induced cell
cycle arrest or apoptosis (107–109), whereas others observed that Tax
sensitizes cells to stress-induced apoptosis (110–113). Likely, the
decision between proliferation and death is influenced by the cellular
environment, cell type genetic background, and multiple co-existing
signaling events. Depending on context, which set of genes that Tax
transcriptionally activates (31) and/or which cluster of gene products
that Tax binds (94) will mean either the normal cellular response
against oncogenic stress will either prevail (i.e. apoptosis) or be sub-

verted (i.e. proliferation) by HTLV-I. A clear understanding of factors
in addition to Tax that guide this choice for HTLV-I-infected T-cells
will be a major topic for future research.

Concluding Comments
Over 20 million individuals globally are infected with HTLV-I. It

is estimated that 2–5% of these carriers will develop ATL over their
lifetime. The identification and isolation of HTLV-I 25 years ago
have spurred intensive mechanistic investigations into ATL trans-
formation. Using Tax as a model system, we have learned that viral
means for transformation parallel similar mechanistic changes
seen in spontaneously occurring cancers. A simplified sequence of
events appears to be genetic damage initiated by oncogenic stimuli,
followed by subversion of cellular checks allowing tolerance and
fixation of changes into the genome, and finally selection over time
for the correct mix of gene alterations that confer selective growth
advantage. Clearly the process is complex and multifaceted. Flesh-
ing out all the biological and molecular details to accompany this
simplified framework will easily keep HTLV researchers busy for
another 25 years.
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